Стальной каркас железобетонных сооружений

Сравнение железобетона и металлокаркаса
В этой статье мы сравним 2-е технологии строительства промышленных зданий: металлокаркасного и железобетонного здания.
Прежде всего давайте определим что такое металлокаркасное и железобетонное здание.

Металлокаркасное здание
В металлокаркасном здании несущие элементы (колонны, связи, балки перекрытия и фермы)  выполнены из стали.
Колонны выполняют преимущественно из двутавра или составного сечения из уголков, швеллеров.
Перекрытия до 12 м выполняют из прокатных или сварных балок, более 12 м из ферм. Поверх балок и прогонов монтируют профлист или кровельную сэндвич-панель. В межэтажном перекрытии иногда используют профлист как несъёмную опалубку и делают монолитное перекрытие. Также можно поверх стальных балок монтировать ж.б. перекрытия для увеличения скорости монтажа.
Жесткость каркаса обеспечивается жесткой заделкой колонн в фундамент и/или применением связей и ригелей, либо жестким соединением колонны с фермой или балкой.
Ограждающие стены, как правило, выполняют из сэндвич-панелей.
Преимущества металлокаркасного здания
— Высокая скорость монтажа, которая обеспечивается изготовлением элементов здания на заводе, а на строительной площадке элементы только соединяются при помощи болтового или сварного соединения.
— Отсутствие мокрых процессов, что позволяет вести строительство зимой без устройства тепляков.
— Меньшая нагрузка на фундамент: несмотря на то, что плотность стали выше чем у бетона, у нее и прочность гораздо выше чем у бетона и, при прочих равных условиях, здание из металлокаркаса будет легче чем из железобетона. Посоревноваться с металлом в этом показатели может только дерево.
— Нет необходимости иметь завод под рукой — элементы можно изготовить за тысячу километров от строительной площадки. При строительстве монолитного здания требуется наличие завода не далеко от строительной площадки или устройство мобильного бетонно-растворного узла, что ограничивает его применение в районах Крайнего Севера или Дальнего Востока.
— Металлокаркасное здание легко модернизировать под новые требования при модернизации производства. Элементы легко демонтируются, усиление несущих элементов производится просто приваркой к существующему усиливающего элемента (полосы стали или профиля). При этом усиление конструкции может производится без демонтажа элементов. Иметь способ модернизировать промышленное здание без существенных вливаний финансовых средств очень важно для успешной деятельности предприятия. Установка нового оборудования может потребовать постройки нового здания, если старое не удовлетворяет условиям технологии. В этом случае рациональнее реконструировать здание чем сносить здание и строить новое.
— При демонтаже здания металл можно переплавить, что позволяет повторно использовать данный материал. Это, на мой взгляд, одно из самых важных преимуществ металлокаркасного здания для промышленности. Жизненный цикл пром.здания может быть совсем малым т.к. меняются технологии, из-за дорожания земли или по другим причинам рационально перенести производство в другое место, а старое здание не имеет смысла модернизировать. В этом случае использовать металл для переплавки гораздо эффективнее и экологичнее, чем выбрасывать железобетон на свалку.
— Возможность перенести здание в другое место. Здание можно не только демонтировать, но и смонтировать заново в другом месте. Выполнить это можно не во всех случаях, но иногда можно хотя бы частично. Например очень часть можно встретить бывшие в употреблении кровельные фермы с демонтированного здания.
— Есть множество типовых проектов складов, пром.зданий, административных зданий, что позволяет уменьшить срок проектирования, изготовления и строительства.
— Простота контроля за расходом материала. Иногда это очень важно т.к. не заметно своровать колонну или балку не получится в отличии от бетона, цемента.
— Для монтажа требуется меньше строительной техники, и в большинстве случаев можно ограничится краном.
— Возможность сделать большие пролеты здания. Хотя можно использовать стальные фермы и в железобетонном здании.
Недостатки металлокаркасного здания
— Одним из самых больших недостатков металлокаркасного здания является низкая пожаростойкость конструкций. Несмотря на то, что металл не горит, он очень сильно теряет свои несущие способности при пожаре. Существуют способы для увеличения пожаростойкости, но они приводят к удорожанию и увеличению срока строительства здания. Существуют специальные окрасочные материалы, которые могут увеличить пожаростойкость стальных конструкций до 30 минут. Для большей защиты применяют конструктивную пожарозащиту (обшивка металлоконструкций минеральной ватой, гипсоволокнистыми листами или обетонирование конструкций).
— Низкая коррозионная стойкость, однако при правильном проектировании и эксплуатации этой проблемы нет. Конструкции должны быть хорошо окрашены, регулярно осматриваться на предмет увлажнения, появления коррозии, герметичности конструкции. При правильной эксплуатации конструкции будут служить вечно.
— Более высокая стоимость по сравнению с железобетонными зданиями. Если по близости есть завод по производству бетона, то молонит будет дешевле (на Севере и Востоке нашей страны с этим можно поспорить т.к. там бетон раза в 3 дороже чем в других регионах России). Хотя если мы будем сравнивать не только показатели по общей стоимости, но и разнице во времени на постройку и упущенной прибыли предприятия от работы в это время, то металлокаркас, возможно, выиграет и монолита. Кроме того при строительстве зимой стоимость монтажа мололита возрастает т.к. необходимо прогревать бетон. В каждом конкретном случае нужно сравнивать варианты, но обычно кто что умеет, тот то и строит.
Железобетонное здание
В железобетонном здании несущие конструкции (стены, перекрытия) выполнены из армированного бетона.
Здание может быть монолитным или из сборных железобетонных конструкций (часть элементов изготавливается на заводе, а затем соединяются на площадке при помощи сварки выпущенной арматуры и замоноличивания участка).
Жесткость каркаса обеспечивается жесткой заделкой колонн в фундамент, жестким соединением колонны с перекрытием, использованием диафрагм (монолитных стен).
В промышленном строительстве не редко железобетонные и стальные конструкции используют вместе, например изготавливают колонны из железобетона, а жесткость каркаса обеспечивается наличием стальных связей. Перекрытие тоже может быть из стальных конструкций т.к. использование стальных ферм при больших пролетах более рационально чем использование монолита или плит перекрытия.
Для ограждающих конструкций также можно использовать сэндвич-панели, либо выполнить стены из блоков и утеплить снаружи.
Преимущества железобетонного здания
— Более низкая стоимость по сравнению с металлокаркасным (имеется ввиду там, где бетон имеет не завышенную стоимость). Этот вопрос уже поднимал выше, в каждом отдельном случае необходимо рассчитывать, но в большинстве случаев это утверждение верно.
— Высокая пожаростойкость конструкции. Бетон не сильно изменяет свои свойства от воздействия температуры и защищает арматуру.
— Высокая коррозионная стойкость, которая обеспечивается защитой арматуры бетоном.
— Высокая скорость монтажа при использовании готовых заводских изделий. По скорости монтажа может посоревноваться с металлокаркасным зданием если все изделия выполнены на заводе и на строительной площадке не требуется производить монолитных работ.
— Большой ассортимент готовых железобетонных изделий (плиты перекрытия, колонны, фундаментные блоки).
— Также как и у металлокаркасных зданий есть достаточно много типовых серий зданий.
Недостатки железобетонного здания
— Самым главным недостатком является наличие мокрых процессов при строительстве, что ограничивает, либо затрудняет монтаж конструкций в зимнее время, но это относится к монолитным конструкциям.
— Большие сроки строительства монолитного здания по сравнению с металлокаркасом. Это в основном связано с тем, что бетону нужно время для набора прочности (100% прочности бетон набирает за 28 дней).
— Усилить железобетонные конструкции при реконструкции более затратно и трудоемко чем в металлокаркасном здании.
— Можно еще добавить как недостаток сложность обследования здания т.к. чтобы узнать какая арматура находится в колонне или балке необходимо вскрывать её, но это только при отсутствии проектной документации на здание, что встречается нередко.
— Более ограниченные возможности при реконструкции по сравнению с металлокаркасом.
— Более высокие нагрузки на фундамент.
Вывод
Нельзя сказать что одна технология явно лучше другой, в каждой есть свои плюсы и минусы. Нет плохих материалов, есть не правильное их применение.
Кроме того очень часто в металлокаркасном здании испозуются ж.б. элементы и наоборот. Хорошим примером является использование ж.б. колонн и стальных ферм в промышленном здании, что позволяет сэкономить на колоннах, обеспечить пожаростойкость конструкции и при этом сделать большой и легкий пролет здания.
По стоимости эксплуатации здания практически не отличаются, единственное металлокаркасные здания требуют периодического осмотра на предмет появления коррозии и обновление огнезащитного покрытия (при ее наличии).
Также не корректно сравнивать металлокаркасное и железобетонное здание по теплоизолирующим способностям — в обоих случаях каркас закрывается современными утеплителями снаружи и не контактирует с внешней средой, не создает мостика холода (естественно при грамотном проектировании).
При выборе технологии строительства нужно ответить на несколько вопросов:
— Какие строительные материалы и другие ресурсы доступны на месте строительства?
— Какие сроки строительства?
— Какие противопожарные требования предъявляются к зданию?
— Какие технологические требования предъявляются к будущему зданию?
— Продумать способы доставки материалов на строительную площадку.
— Предусмотреть возможность расширения и модернизации производства.

Каркас это несущая основа промздания, которая состоит из поперечных и продольных элементов. Поперечные элементы — рамы воспринимают нагрузки от стен, покрытий, перекрытий (в многоэтажных зданиях), снега, кранов, ветра, действующего на наружные стены и фонари, а также нагрузки от навесных стен. Продольные элементы каркаса — это подкрановые конструкции, подстропильные фермы, связи между колоннами и фермами, кровельные прогоны (или ребра стальных кровельных панелей). Основные элементы каркаса — рамы. Они состоят из колонн и несущих конструкций покрытий — балок или ферм, длинномерных настилов и пр. Эти элементы соединяют в узлах шарнирно с помощью металлических закладных деталей, анкерных болтов и сварки. Рамы собирают из типовых элементов заводского изготовления. Другие элементы каркаса — фундаментные, обвязочные и подкрановые балки и подстропильные конструкции. Они обеспечивают устойчивость рам и воспринимают нагрузки от ветра, действующего на стены здания и фонари, а также нагрузки от кранов.

Преимущества и недостатки

Железобетонные каркасы незаменимы при сооружении высотных зданий, т.к. обладают отличной прочностью. При частном строительстве допустимо выбирать материалы с менее хорошими характеристиками. В связи с этим использование стального каркаса железобетонного при частном строительстве является экономически необоснованным.

Основные преимущества применения материала:

  • высокая несущая способность;
  • огнестойкость;
  • длительная эксплуатация;
  • малые эксплуатационные расходы;
  • надежность конструкции;
  • затраты на производство таких изделий намного ниже, чем на конструкции из камня или металла;
  • длина пролетов позволяет создавать большие помещения без дополнительных опор (перегородок, колонн).

Недостатки материала:

  • большая плотность;
  • необходимость выдержки до приобретения прочности;
  • высокая звуко- и теплопроводность;
  • трудоемкость ремонтных работ, усиления конструкции;
  • материал может покрыться трещинами из-за усадки и силовых воздействий.

Одноэтажное многопролетное каркасное здание с мостовыми кранами

В одноэтажных промышленных каркасных зданиях с мостовыми кранами принципиально важной является увязка размеров здания в поперечном направлении и по высоте со стандартными размерами мостовых кранов.

На рис. показан крайний пролет многопролетного здания.

Зависимость между пролетом здания L и пролетом крана Lк определяется равенством

Lк = L — 2l,

где l — расстояние между разбивочной осью и осью подкрановой балки, которое по действующим стандартам принимается равным от 750 до 1500 мм.

Одноэтажное многопролетное здание с мостовыми кранами

1 — крайняя колонна, 2 — средняя колонна, 3 — подкрановая балка, 4 — мостовой кран

Такие величины I необходимы для того, чтобы длина «хвостовой» части мостового крана, выступающая за пределы его пролета Lк, размещалась между осью подкрановой балки и внутренней гранью верхней части колонны с обеспечением зазора шириной не менее 60 мм. Вместе с тем верхняя часть колонны должна иметь размеры сечения, обеспечивающие ее прочность. Для выполнения этого условия наружную грань крайней колонны приходится иногда относить от разбивочной оси в наружную сторону на величину а, называемую привязкой. При этом внутренняя грань стены, совмещаемая с наружной гранью колонны, также имеет привязку а.

Взаимоувязка размеров Lк, I и а в зависимости от грузоподъемности крана Q приведена в табл.

Соотношение основных размеров каркасного здания с мостовым краном.

При соответствующем обосновании допускается привязка а=500мм

В каркасных зданиях без мостовых кранов а=0

Размеры привязок соблюдаются особенно строго в сборных железобетонных конструкциях. В стальных конструкциях унификация еще не стала таким «всеобщим законом», как в сборном железобетоне, Для средних колонн разбивочная ось является обычно и осью симметрии.

В вертикальном направлении высота Н1 от пола до уровня головки кранового рельса и высота Н2 от уровня головки кранового рельса до низа несущих конструкций покрытия образуют в сумме высоту Н от пола до низа несущих конструкций покрытия.

Высота Н1 выбирается по технологическим требованиям так, чтобы мостовой кран мог проносить на своем крюке в предельном верхнем положении грузы необходимого размера над наиболее высокими агрегатами, расположенными в данном пролете здания, а также с обеспечением безопасности работающих.

Минимальная величина размера Н2 принимается с таким расчетом, чтобы между верхней границей кранового габарита и низом несущих конструкций покрытия оставался зазор не менее 100 мм.

После выбора размеров Н1 и Н2 полная высота здания Н округляется до одного из приведенных выше размеров, но не менее 8,4 м.

Виды, где используется в строительстве

Различают 3 вида таких конструкций:

  1. Монолитный. Производится путем заливки опалубки бетонным составом. Монолитные изделия не имеют ограничений по размеру, типу колонн и т.д. Они прочны, способны распределять нагрузку на балки и плиты перекрытия, благодаря чему удается сэкономить используемые материалы. Требуют использования термоизоляции, если применяются для возведения стен и перегородок. Чтобы соорудить такой вид конструкции, необходимо бетонную смесь заливать в съемную опалубку, т.к. это ускорит процесс.
  2. Сборный. Применяется при сооружении промышленных зданий и в условиях индивидуального строительства. Сборный железобетонный каркас многоэтажного здания дает возможность работать при низкой температуре. Его основные элементы (колонны, ригели, основы лестничных проемов) производятся на заводе, а собираются непосредственно на строительстве.
  3. Сборно-монолитный. Основой технологии является несущий каркас, который состоит из железобетонных элементов заводского изготовления (колонны, ригели, пустотные плиты). Благодаря этому представляется возможной сборка каркасов с большим расстоянием между несущими элементами. Жесткость и устойчивость конструкции достигается узлами сопряжения ригелей с колоннами. Бетонирование швов между плитами создает жесткий диск перекрытия.

Сборный каркас

Сборный каркас модулируется в продольном и поперечном направлениях кратно 3 м. Наиболее экономичны размеры композиционной ячейки для многоэтажного здания — 6X6 м, 6×3 м и доборная 3×3-и, которые хорошо увязываются с размерами и формой помещений таких зданий, как школы, детские учреждения, административные здания, столовые, библиотеки и др.
Жилые здания хорошо компонуются в тех же осевых размерах: для продольного шага жилой секции 6+3+6 м для ширины здания 6+6 м. Каркас проектируется по стоечно-ригельной или безригельной схемам. Выбор схемы, а также формы стоечно-ригельного каркаса (продольной или поперечной) связан с вопросами экономического и композиционного порядка.

Поперечный стоечно-ригельный железобетонный каркас

Поперечный стоечно-ригельный железобетонный каркас, решенный в виде жестких рам, не требует в поперечном направлении диафрагм жесткости, тогда как при продольном или безригельном каркасе они обязательны. С другой стороны при безригельном каркасе потолок помещений освобождается от выступающих ригелей и сокращается количество монтажных элементов. Выбор продольного или поперечного стоечно-ригельного каркаса связан также с весом перекрытий и размерами осевой сетки. При поперечном каркасе с сеткой 6X3 м перекрытия имеют пролет 3 м и получаются значительно легче, чем при сетке 6×6 м или при продольном каркасе с любой сеткой (рис. 1).

Рис. 1. Пролеты в сборных перекрытийв каркасном здании

а — при стоечно-ригельном поперечном каркасе с осевой сеткой 6 X 6 м; б — то же, с осевой сеткой 6X3 м; в — при стоечно-ригельном продольном каркасе с осевой сеткой 6X6 м; е — то же, с осевой сеткой 6X3 м

Стойки каркаса изготовляются в один или несколько этажей сечением от 200×200 до 400×400 мм. Ригели могут быть однопролетными и многопролетными сечением от 200×400 до 300×600 мм. При расчете каркаса только на вертикальные нагрузки соединения стоек и ригелей не рассчитываются на восприятие моментов и делаются шарнирными или частично защемленными, при этом возможно применение многоэтажных стоек (рис. 2, а и в),

Более просты в изготовлении и монтаже унифицированные стойки на один этаж с платформенным опиранием ригелей или перекрытий (рис. 2, б и г). При соответствующем расчете и конструировании полного каркаса и его стыков без излишней затраты средств можно иметь жесткие в своей плоскости рамы, вполне обеспечивающие в этом направлении устойчивость здания средней этажности. Неполный каркас в любом случае конструируется со связевой системой устойчивости

Рис.2. Схемы каркасно-панельного здания а — с полным поперечным стоечно-ригельным каркасом с шарнирным сопряжением элементов; 6 — то же, с платформенным опиранием; в — с неполным поперечным стоечноригельным каркасом; г — то же, с безригельным каркасом; 1 — стойка; 2 — ригель; 3 — перекрытие; 4 — наружные ограждающие панели; 5 — платформенный стык; 6 — частично защемленный стык; 7 — стык стоек; 8 — наружные несущие панели

Для удобства монтажных работ при строительстве железобетонного каркаса соединение многоэтажных стоек делается на 500—600 мм выше верха ригелей с помощью стальных оголовников, привариваемых к арматуре стоек и свариваемых по контуру. Ригелиопираются на выпускные закладные консоли и тоже привариваются к ним и к столикам (рис. 3, а и б).

Платформенный стык осуществляется путем опирания ригелей (при стоечно-ригельном каркасе) или непосредственно перекрытий (при безригельном) на стойки нижележащего этажа и стоек вышестоящих на этот узел сверху. Оголовники стоек свариваются с закладными пластинками элементов перекрытия (рис. 3, в и г).

Внутренние стены, выполняющие роль диафрагм жесткости, ставятся друг на друга по всей высоте здания. Они делаются из железобетона по типу несущих поперечных стен и прочно соединяются с элементами каркаса. Горизонтальные стыки панелей проверяются на действие нормальных и скалывающих напряжений.

Рис.3. Детали каркаса а — стык стоек; б — частично-защемленный стык ригеля со стойкой; в — платформенный егык в стоёчно-рнгёльном каркасе; s— платформенный стык перекрытий со стойкой в безри-гельном каркасе; 1 — стойка; 2 — ригель; 3 — сварка; 4 — закладные стальные части; 5 — панель перекрытия; 6 — стальной оголовник стойки; 7 — обетоненная консоль из двутавра; 8 — раствор; 9 — обетонка стыка

Ограждающие панели при полном железобетонном каркасе делаются самонесущими или навесными в зависимости от этажности здания, материалов и конструкции панелей. Разрезка стены на отдельные элементы может быть различна по размеру и форме, а сами элементы различаются по материалу, фактуре и цвету.

Рельефно выступающая простеночная панель позволяет полностью или частично скрыть стойки каркаса (рис. 4, а). При панелях на целый шаг каркаса или более стойки делают полностью выступающими в помещение (рис.4, б—г). Материалы и конструкции панелей применяются такие же, как при поперечных несущих стенах. Самонесущие панели устанавливаются с гибкой анкеровкой к элементам каркаса или перекрытиям (рис. 4, б), а навесные — с жесткой анкеровкой (навеской) или непосредственным опиранием на элементы железобетонного каркаса (рис. 4, в и г).

Рис. 4. Детали узлов сопряжений панелей с каркасом а — решение с пилястрами; б — с самонесущими панелями на комнату (разрез и планов — с навесными панелями на комнату; г — с навесными панелями поясной разрезки; / — панель стены; 2 — стойка каркаса; 3 — панель пилястры; 4 — эффективный утеплитель; Б — ригель каркаса; 6 — легкий бетон; 7 — теплоизоляция; 8 — раствор; 9 — пороизол; 10 — синтетическая мастика; 11 — пароизоляция; 12 — стальные уголки; 13 — стальной анкер; 14 — декомпрессионная полость; 15 — тяжелый бетон; 16 — перекрытие; 17 — сварка; 18 — стальной оголовник стойки; 19 — стальные закладные части; 20 — подклинка; 21 — простенок

Вертикальные швы между панелями и каркасом тщательно уплотняются эффективными теплоизолирующими полосами и покрываются слоем легкого раствора, наносимого для прочности по сетке.

Неполный железобетонный каркас

При неполном железобетонном каркасе для наружных стен применяются несущие панели. Разрезка стены на панели при поперечном стоечноригельном каркасе может быть как на комнату и более, так и с простеночными элементами. При этом нужно иметь в виду, что на опорах ригелей создаются большие сосредоточенные нагрузки, что требует повышенной прочности панелей. При продольном или безригельном каркасе панели делаются не менее чем на комнату, а опирание перекрытий дает нагрузку более распределенную по периметру наружных стен. Несущие панели рекомендуется делать однослойными из легкого бетона, так как в многослойных панелях при опирании ригелей или перекрытий на их железобетонную основу создаются тепловые мостики, ведущие к промерзанию мест опирания.

В одноэтажных зданиях железобетонные каркасы выполняются в виде рам с жестким защемлением стоек в фундаментах и с шарнирным соединением с фермой или балкой покрытия, распертых в продольном направлении.

Технология строительства железобетонных каркасных конструкций

От типа металлической конструкции и количества этажей зависит способ возведения здания. Различают сборные, монолитные и комбинированные конструкции.

Первый вариант имеет ряд преимуществ:

  1. Отсутствие необходимости подогрева рабочего места зимой, что существенно экономит затраты на энергоресурсы.
  2. Возможность оставлять железобетонные материалы на стройке, что обеспечивает непрерывность процесса сборки конструкции.
  3. Уменьшение необходимости непрофессиональной рабочей силы.
  4. Наличие дополнительного пространства, которое отсутствует при монолитном строительстве.
  5. Элементы каркаса изготовляются на заводе, что позволяет обойтись без сварочных работ.
  6. Быстрота сооружения здания.
  7. Достижение прочности сразу после установки.

Среди недостатков — большой расход материала на опоры, ограничение в формах, которые по умолчанию установлены заводом-изготовителем, т.к. арматура не поддается сгибанию.

Сборные конструкции

При возведении многоэтажных домов используют следующие типы сборных каркасов:

  1. Связевый. Представляет собой пространственную конструкцию и колонны, которые шарнирно прикреплены к ней при помощи ригелей. Обеспечение жесткости происходит неравномерно. Из-за шарнирного крепления колонны почти не сопротивляются горизонтальным сдвигам. Элементы сжимаются вертикальными нагрузками (несущие стены, внутренние перегородки, плиты перекрытия).
  2. Рамно-связевый. Отличается от предыдущего типа жестким креплением колонн и балок.
  3. Рамный. Колонны и ригели закреплены жестко. Они образуют плоские и пространственные рамы в 2-3 направлениях. Жесткость обеспечивается равномерно всеми составляющими системы. На несущую способность рамы влияет каждый элемент в отдельности, параметр снижается при увеличении шага установки колонн и с повышением высоты этажа.

Чтобы элементы каркаса было удобно транспортировать, на них устанавливаются специальные петли или проделываются отверстия. На строительной площадке детали сваривают.

Конструкция таких каркасов предполагает наличие железобетонного фундамента. На нем монтируют колонны с промежутками 6-12 м. Для фундаментных балок применяют бетон марок 200-400. Эти элементы будут служить опорой несущим стенам. Балки размещают так, чтобы уровень пола был на 3 см выше их верхней стороны. Пустое пространство заливается бетоном. Для этого подходит марка 100.

Для того чтобы пол был защищен от промерзания, а также, чтобы на нем не сказывалось влияние почвы на балки, производят гидроизоляцию. Большие конструкции возводятся при помощи колонн 1.020, приспособленных к нагрузке до 500 т, что равняется 10 этажам. Наружные стены возводят из ячеисто-бетонных блоков, уложенных в 1 ряд. Благодаря нулевой жесткости сохраняется пластичность фасада. Блоки укладывают на балки или плиту перекрытия.

При строительстве несущей конструкции из блоков маленького размера кладку можно производить в 1 или несколько слоев. На этапе конструирования подобного строения нужно убедиться, что кладка не служит опорой каркаса. Толщина стен подбирается с учетом теплоизоляционных требований. В жилых домах этот параметр должен быть равен 50 см.

Ячеисто-бетонные блоки подходят и для внутренних перегородок (между комнатами, квартирами). Эти стены являются для каждого этажа самостоящими. Во время планирования толщины перегородок и перекрытий в первую очередь учитываются требования звукоизоляции (больше 50 дБ).

Существуют нормативные документы для расчета параметра. Он зависит от используемых блоков, раствора, бетона и пр. Избавиться от посторонних звуков поможет минплита, которой заполняются пустоты. Плотность материала должна находиться в пределах 80-100 кг/м³.

Рекомендуемая толщина межкомнатных стен — 12 см, звукоизоляционный параметр — минимум 43 дБ.

Сборный каркас чаще всего применяется при возведении 2-5-этажных промышленных построек. Если строится более высокое здание, требующее больших крановых нагрузок, то целесообразно использовать стальное основание. Его составляющие (колонны, ригели и связующие элементы) бывают сплошные или решетчатые. Их изготавливают из швеллеров, уголков и прочих профилей, скрепленных при помощи сварочного аппарата.

Каркасы с опорами из камня устанавливают при возведении невысоких строений при отсутствии больших пролетов и чрезмерных нагрузок. Несущую способность повышают за счет армирования стальной сеткой, арматурой или усиливают, применяя железобетонные сердечники.

Сборно-монолитные каркасы

При применении таких каркасов можно снизить трудоемкость работ и уменьшить их срок, сохранив основные достоинства монолитных конструкций.

В этом варианте колонны и балки бетонируются в опалубке с тонкими стенками и квадратным сечением. Стыки арматуры и опалубки замоноличиваются, когда колонны и балки заливаются бетоном.

Элементы изготавливают из обыкновенного или преднапряженного бетона. При этом толщина стенок должна находиться в пределах 8-12 см. Если используется обыкновенный бетон, потребуется дополнительное армирование.

Технология возведения такой конструкции:

  1. Колонны монтируются в выемку в ж/б плите, на которой размещаются панели с пустотами, сверху устанавливают пролетные элементы.
  2. Арматурную сетку, которая расположена между панелями приваривают к армопрутьям пролетных элементов.
  3. Заливают бетонную смесь.

Монолитный каркас

Монолитный каркас можно соорудить при помощи как съемной, так и несъемной опалубки. Второй тип чаще применяется для возведения невысоких частных домов. После того как опалубку заливают бетоном, она соединяется с другими элементами и выполняет роль несущей конструкции. В современном строительстве ее изготавливают из разных материалов, в т.ч. из пенопласта.

В зависимости от конструкции опалубки бывают 2 видов:

  1. Щитовой. Опалубку такого типа создают из отдельных деталей, которые соединяются специальными крепежными элементами. Таким образом формируют емкость для заливки бетона, который станет основанием будущей постройки.
  2. Туннельный. Опалубку приобретают в собранном виде, из-за чего такой тип конструкции подойдет не для всех монтажных работ. Купленные изделия не подлежат изменениям. Их заполняют раствором сразу после установки.

Если требуется большой объем бетона, его заказывают на предприятии. В другом случае раствор можно замесить самостоятельно.

После завершения работ по укладке бетона необходимо перейти к его уплотнению: это убережет конструкцию от образования пустот. Для выполнения задачи подойдут специальные инструменты (глубинный, а также поверхностный вибратор и пр.).

При помощи уплотнения монолитный каркас станет максимально прочным. После завершения процесса переходят к армированию конструкции. Особенности технологии позволяют реализовывать различные дизайнерские идеи.

Колоны промышленных зданий и сооружений

Колоны промышленных зданий по материалу исполнения выполняются из металла и/или железо-бетонна ( монолитного и/или сборного). Металлические колонны – представляют собой несущую строительную конструкцию, располагаемая вертикально и служащая чаще всего в качестве опоры зданий. Однако на сегодняшний день металлические колонны используют не только как основные несущие конструкции. Металлические колонны совместно с балками образуют скелет здания. Колонны металлические, объединенные при помощи металлических балок, создают очень надежный каркас здания. На металлические колонны возложена основная силовая нагрузка. Стальные металлические колонны применяются чаще иных благодаря их высоким прочностным характеристикам.

Крепление металлической колоны к фундаменту

Огнестойкость металлической колонны не обеспечена, и необходимо предусмотреть дополнительные меры по повышению предела огнестойкости металлической колонны. Железобетонные колонны – это архитектурный элемент, который способен выполнить одновременно две функции. Колонна придает зданию стиль и индивидуальность, на ней великолепно смотрятся балки, арки, ригели и пр. Колонна служит специальной опорной конструкцией, снижая нагрузку конструкции на грунт.

Сборный железобетон – за и против

Главное отличие сборного железобетона от строительства из монолита – это изготовление строительных конструкций в заводских условиях при тщательном лабораторном контроле всего процесса. Влияние человеческого фактора на качество изделий сводится к абсолютному минимуму и, наверное, можно отнести это к серьезным преимуществам. Как, впрочем, и быстрый монтаж, не требующий большого количества квалифицированных рабочих на объекте. Благодаря системе пустот железобетонные изделия отлично заглушают шумы, превосходят различные технологии по несущей способности и некоторым другим механическим свойствам. Отметим высокую трещиностойкость, отличную способность сопротивляться динамическим нагрузкам и противостояние коррозийным воздействиям. Но для сравнения с монолитом отметим, что сборный железобетон преимущественно используется для создания унифицированных конструкций.

Что выбрать?

. Если же в приоритете скорость, требуется качественный и при этом недорогой объект в сжатые сроки, лучше остановиться на более традиционном и проверенном методе строительства из железобетона.

Если вы планируете создание крупной площадки – торгового центра, промышленных и логистических баз, возможно, монолитное строительство будет более целесообразно. Если же речь о небольших площадках, расходы на монолит автоматически становятся неоправданно большими, и здесь явно выгоднее обратиться к железобетонным изделиям. В любом случае, принять правильное решение вам помогут опытные специалисты, которые имели возможность на практике сравнить преимущества и строительства из железобетона и монолитного метода. Вот почему мы рекомендуем обратиться именно к нам.. Материал изготовления колонн – железобетон, являющийся одним из наиболее долговечных и прочных материалов, способен выдерживать большие нагрузки. Сборные железобетонные колонны производятся с сечением от 300х300 до 500х500, 600х600, 400х800 длиной от 2.25 до 19 м. ГОСТ 25628-90 Колонны бетонные Настоящий документ должен применяться при разработке проектов планировочной организации территории новых, расширяемых и реконструируемых производственных объектов : промышленных предприятий различных отраслей, объектов инженерного обеспечения, складов, объектов транспорта, связи, коммунальных объектов, технопарков, логистических центров.

Колоны башмачного типа

Соединение колонных башмаков с фундаментными болтами осуществляется с помощью гаек и шайб, с их же помощью осуществляется корректировка колонны по высоте, а также относительно вертикальной оси. После установки колонны в проектное положение, пространство между колонной и основанием (фундаментом) необходимо заполнить бетоном как можно скорее с целью предотвращения возможных деформаций в болтах. В дальнейшем, оба соединенных элемента будут работать, как единая железобетонная конструкция (т.к. такое соединение является жестким). Все нагрузки, воспринимаемые колонной, с помощью колонных башмаков передаются на анкерные болты в фундаменте. Количество башмаков в колонне зависит от размеров колонны, нагрузок, передаваемых колонной, класса бетона и типа башмака колонны. Бетонные колоны изготавливаются в соответствии с Межгосударственным стандартом на бетонные колонны

У колоны данного типа 6 башмаков.

Огнестойкость железобетонной колонны обеспечена изначально. Для обеспечения пожарной безопасности складского здания требуется выполнение следующего условия: фактический предел огнестойкости конструкций (Пф) должен быть равен или превышать требуемый (Птр) по нормам предел огнестойкости. (Пф>Птр).

Экономичность и снижение стоимости строительства склада.

Использование железобетонных колонн в несущем каркасе складского комплекса класса А изначально оправдано более низкой стоимостью железобетонных колонн. В условиях финансового кризиса, когда стоимость металла зависит от валюты, металлические колонны становятся слишком дорогими при строительстве складов класса А. Выводы по выбору несущих колонн для склада класса А

При проектировании и строительстве складского комплекса класса А использование железобетонных колонн однозначно выгоднее и рациональнее в силу следующих факторов:

— по УСТОЙЧИВОСТИ железобетонная колонна при расчетной длине 12 метров обладает гораздо большей устойчивостью, чем металлиеская, причем в обоих плоскостях. А металлическая колонна имеет разную устойчивость в своих плоскостях.

— по ОГНЕСТОЙКОСТИ железобетонная колонна не требует каких либо дополнительных мероприятий по обеспечению предела огнестойкости строительных конструкций, металлическая колонна требует применения дополнительных мер, что ведет в увеличению стоимости.

— по ЭКОНОМИЧНОСТИ в условиях финансового кризиса, когда стоимость металла напрямую зависит от валюты, железобетонная колонна получает неоспоримое преимущество в стоимости, при этом обладая необходимой устойчивостью и огнестойкостью. Использование железобетонных конструкций значительно снижает стоимость строительства складских комплексов класса А.

Компания готова перепроектировать бетонные колоны и стальные колонны под бетонные колоны башмачного типа

Повышение эффективности монолитного каркасного жилья

Несмотря на то что монолитный каркас приобрел доверие строителей, его свойства постоянно улучшают: повышают прочность, снижают расход материалов. Для достижения этих целей применяют бетоны более высоких марок. Благодаря этому удается снизить расход арматуры и стоимость постройки. Каркас здания считается эффективным, если армирование превышает 3%.

Монолитную конструкцию оптимизируют следующими способами:

  • по марке бетона;
  • по сечению железобетонных компонентов;
  • по проценту армирования в бетоне.

При возведении монолитного здания руководствуются способом, который предполагает заглубление коробки сооружения на 2 этажа. При помощи этого метода удается сделать конструкцию максимально надежной, т.к. нагрузки передаются высокопрочным пластовым почвам.

Несмотря на эффективность, эта технология редко применяется при возведении домов высотой до 3 этажей включительно. Причина заключается в высокой стоимости такого строения (сооружение деревянной опалубки, применение дорогостоящей техники и пр.). При обустройстве невысоких зданий чаще применяют сборные каркасы, которые обладают достаточной прочностью, при этом стоят намного дешевле.

Одноэтажное однопролетное здание с несущими стенами

Одноэтажные бескаркасные здания с несущими стенами применяются при сравнительно небольших пролетах (до 12, редко 18 м), небольших высотах (до 9 м), а при наличии мостовых кранов — при грузоподъемности их не более 5 т.

Стены такого здания являются одновременно и ограждающими, и несущими элементами. Для обеспечения опирания на стены унифицированных конструкций покрытий стены располагают так, чтобы их внутреняя грань отстояла от разбивочной оси на 250 мм.

Одноэтажные однопролетные здания с несущими стенами (поперечные разрезы)

а — здание небольшой высоты, б — здание большой высоты без мостового крана, в — то же см мостовым краном, 1- покрытие, 2 — пилястра

Двускатное очертание покрытия обеспечивает удобный отвод с покрытия дождевых и талых вод. Основной размер здания по вертикали — высота от пола до низа покрытия — выбирается в зависимости от технологических нужд из числа приведенных выше.

Несущие конструкции покрытия опираются своими концами непосредственно на стены. При высоте до 8—9 м толщина стены, необходимая для отапливаемого здания по теплотехническому расчету, в большинстве случаев оказывается достаточной и по расчету на прочность.

При большей высоте и при наличии мостового крана стены усиливают пилястрами, которые располагают (в плане) между окнами на разбивочных осях. В этом случае несущие конструкции покрытия опираются на пилястры и стены располагают так, чтобы внутренняя грань стены совпадала с разбивочной осью.

В здании с мостовым краном пилястры должны иметь размеры, достаточные для опирания подкрановых балок. При отсутствии мостового крана размеры пилястр в плане’назначают исходя из требований прочности и жесткости стены.

Одноэтажное многопролетное каркасное здание с подвесными кранами

Одноэтажные здания с подвесным транспортом при высоте до 9,6 м отличаются простой конструктивной схемой: колонны в таких зданиях имеют постоянное сечение по всей высоте, подкрановые балки отсутствуют. Подвесные краны перемещаются по стальным балкам, подвешенным к несущим конструкциям покрытия.

Одноэтажное многопролетное каркасное здание с подвесными кранами

1 — подвесной кран, 2 — пути подвесного крана

Недостатком таких зданий является ограниченная грузоподъемность подвесных кранов, которая в настоящее время не превышает 5 т.

Каркас это несущая основа промздания, которая состоит из поперечных и продольных элементов. Поперечные элементы — рамы воспринимают нагрузки от стен, покрытий, перекрытий (в многоэтажных зданиях), снега, кранов, ветра, действующего на наружные стены и фонари, а также нагрузки от навесных стен. Продольные элементы каркаса — это подкрановые конструкции, подстропильные фермы, связи между колоннами и фермами, кровельные прогоны (или ребра стальных кровельных панелей). Основные элементы каркаса — рамы. Они состоят из колонн и несущих конструкций покрытий — балок или ферм, длинномерных настилов и пр. Эти элементы соединяют в узлах шарнирно с помощью металлических закладных деталей, анкерных болтов и сварки. Рамы собирают из типовых элементов заводского изготовления. Другие элементы каркаса — фундаментные, обвязочные и подкрановые балки и подстропильные конструкции. Они обеспечивают устойчивость рам и воспринимают нагрузки от ветра, действующего на стены здания и фонари, а также нагрузки от кранов.

Преимущества и недостатки

Железобетонные каркасы незаменимы при сооружении высотных зданий, т.к. обладают отличной прочностью. При частном строительстве допустимо выбирать материалы с менее хорошими характеристиками. В связи с этим использование стального каркаса железобетонного при частном строительстве является экономически необоснованным.

Основные преимущества применения материала:

  • высокая несущая способность;
  • огнестойкость;
  • длительная эксплуатация;
  • малые эксплуатационные расходы;
  • надежность конструкции;
  • затраты на производство таких изделий намного ниже, чем на конструкции из камня или металла;
  • длина пролетов позволяет создавать большие помещения без дополнительных опор (перегородок, колонн).

Недостатки материала:

  • большая плотность;
  • необходимость выдержки до приобретения прочности;
  • высокая звуко- и теплопроводность;
  • трудоемкость ремонтных работ, усиления конструкции;
  • материал может покрыться трещинами из-за усадки и силовых воздействий.

Одноэтажное многопролетное каркасное здание с мостовыми кранами

В одноэтажных промышленных каркасных зданиях с мостовыми кранами принципиально важной является увязка размеров здания в поперечном направлении и по высоте со стандартными размерами мостовых кранов.

На рис. показан крайний пролет многопролетного здания.

Зависимость между пролетом здания L и пролетом крана Lк определяется равенством

Lк = L — 2l,

где l — расстояние между разбивочной осью и осью подкрановой балки, которое по действующим стандартам принимается равным от 750 до 1500 мм.

Одноэтажное многопролетное здание с мостовыми кранами

1 — крайняя колонна, 2 — средняя колонна, 3 — подкрановая балка, 4 — мостовой кран

Такие величины I необходимы для того, чтобы длина «хвостовой» части мостового крана, выступающая за пределы его пролета Lк, размещалась между осью подкрановой балки и внутренней гранью верхней части колонны с обеспечением зазора шириной не менее 60 мм. Вместе с тем верхняя часть колонны должна иметь размеры сечения, обеспечивающие ее прочность. Для выполнения этого условия наружную грань крайней колонны приходится иногда относить от разбивочной оси в наружную сторону на величину а, называемую привязкой. При этом внутренняя грань стены, совмещаемая с наружной гранью колонны, также имеет привязку а.

Взаимоувязка размеров Lк, I и а в зависимости от грузоподъемности крана Q приведена в табл.

Соотношение основных размеров каркасного здания с мостовым краном.

При соответствующем обосновании допускается привязка а=500мм

В каркасных зданиях без мостовых кранов а=0

Размеры привязок соблюдаются особенно строго в сборных железобетонных конструкциях. В стальных конструкциях унификация еще не стала таким «всеобщим законом», как в сборном железобетоне, Для средних колонн разбивочная ось является обычно и осью симметрии.

В вертикальном направлении высота Н1 от пола до уровня головки кранового рельса и высота Н2 от уровня головки кранового рельса до низа несущих конструкций покрытия образуют в сумме высоту Н от пола до низа несущих конструкций покрытия.

Высота Н1 выбирается по технологическим требованиям так, чтобы мостовой кран мог проносить на своем крюке в предельном верхнем положении грузы необходимого размера над наиболее высокими агрегатами, расположенными в данном пролете здания, а также с обеспечением безопасности работающих.

Минимальная величина размера Н2 принимается с таким расчетом, чтобы между верхней границей кранового габарита и низом несущих конструкций покрытия оставался зазор не менее 100 мм.

После выбора размеров Н1 и Н2 полная высота здания Н округляется до одного из приведенных выше размеров, но не менее 8,4 м.

Виды, где используется в строительстве

Различают 3 вида таких конструкций:

  1. Монолитный. Производится путем заливки опалубки бетонным составом. Монолитные изделия не имеют ограничений по размеру, типу колонн и т.д. Они прочны, способны распределять нагрузку на балки и плиты перекрытия, благодаря чему удается сэкономить используемые материалы. Требуют использования термоизоляции, если применяются для возведения стен и перегородок. Чтобы соорудить такой вид конструкции, необходимо бетонную смесь заливать в съемную опалубку, т.к. это ускорит процесс.
  2. Сборный. Применяется при сооружении промышленных зданий и в условиях индивидуального строительства. Сборный железобетонный каркас многоэтажного здания дает возможность работать при низкой температуре. Его основные элементы (колонны, ригели, основы лестничных проемов) производятся на заводе, а собираются непосредственно на строительстве.
  3. Сборно-монолитный. Основой технологии является несущий каркас, который состоит из железобетонных элементов заводского изготовления (колонны, ригели, пустотные плиты). Благодаря этому представляется возможной сборка каркасов с большим расстоянием между несущими элементами. Жесткость и устойчивость конструкции достигается узлами сопряжения ригелей с колоннами. Бетонирование швов между плитами создает жесткий диск перекрытия.

Сборный каркас

Сборный каркас модулируется в продольном и поперечном направлениях кратно 3 м. Наиболее экономичны размеры композиционной ячейки для многоэтажного здания — 6X6 м, 6×3 м и доборная 3×3-и, которые хорошо увязываются с размерами и формой помещений таких зданий, как школы, детские учреждения, административные здания, столовые, библиотеки и др.
Жилые здания хорошо компонуются в тех же осевых размерах: для продольного шага жилой секции 6+3+6 м для ширины здания 6+6 м. Каркас проектируется по стоечно-ригельной или безригельной схемам. Выбор схемы, а также формы стоечно-ригельного каркаса (продольной или поперечной) связан с вопросами экономического и композиционного порядка.

Поперечный стоечно-ригельный железобетонный каркас

Поперечный стоечно-ригельный железобетонный каркас, решенный в виде жестких рам, не требует в поперечном направлении диафрагм жесткости, тогда как при продольном или безригельном каркасе они обязательны. С другой стороны при безригельном каркасе потолок помещений освобождается от выступающих ригелей и сокращается количество монтажных элементов. Выбор продольного или поперечного стоечно-ригельного каркаса связан также с весом перекрытий и размерами осевой сетки. При поперечном каркасе с сеткой 6X3 м перекрытия имеют пролет 3 м и получаются значительно легче, чем при сетке 6×6 м или при продольном каркасе с любой сеткой (рис. 1).

Рис. 1. Пролеты в сборных перекрытийв каркасном здании

а — при стоечно-ригельном поперечном каркасе с осевой сеткой 6 X 6 м; б — то же, с осевой сеткой 6X3 м; в — при стоечно-ригельном продольном каркасе с осевой сеткой 6X6 м; е — то же, с осевой сеткой 6X3 м

Стойки каркаса изготовляются в один или несколько этажей сечением от 200×200 до 400×400 мм. Ригели могут быть однопролетными и многопролетными сечением от 200×400 до 300×600 мм. При расчете каркаса только на вертикальные нагрузки соединения стоек и ригелей не рассчитываются на восприятие моментов и делаются шарнирными или частично защемленными, при этом возможно применение многоэтажных стоек (рис. 2, а и в),

Более просты в изготовлении и монтаже унифицированные стойки на один этаж с платформенным опиранием ригелей или перекрытий (рис. 2, б и г). При соответствующем расчете и конструировании полного каркаса и его стыков без излишней затраты средств можно иметь жесткие в своей плоскости рамы, вполне обеспечивающие в этом направлении устойчивость здания средней этажности. Неполный каркас в любом случае конструируется со связевой системой устойчивости

Рис.2. Схемы каркасно-панельного здания а — с полным поперечным стоечно-ригельным каркасом с шарнирным сопряжением элементов; 6 — то же, с платформенным опиранием; в — с неполным поперечным стоечноригельным каркасом; г — то же, с безригельным каркасом; 1 — стойка; 2 — ригель; 3 — перекрытие; 4 — наружные ограждающие панели; 5 — платформенный стык; 6 — частично защемленный стык; 7 — стык стоек; 8 — наружные несущие панели

Для удобства монтажных работ при строительстве железобетонного каркаса соединение многоэтажных стоек делается на 500—600 мм выше верха ригелей с помощью стальных оголовников, привариваемых к арматуре стоек и свариваемых по контуру. Ригелиопираются на выпускные закладные консоли и тоже привариваются к ним и к столикам (рис. 3, а и б).

Платформенный стык осуществляется путем опирания ригелей (при стоечно-ригельном каркасе) или непосредственно перекрытий (при безригельном) на стойки нижележащего этажа и стоек вышестоящих на этот узел сверху. Оголовники стоек свариваются с закладными пластинками элементов перекрытия (рис. 3, в и г).

Внутренние стены, выполняющие роль диафрагм жесткости, ставятся друг на друга по всей высоте здания. Они делаются из железобетона по типу несущих поперечных стен и прочно соединяются с элементами каркаса. Горизонтальные стыки панелей проверяются на действие нормальных и скалывающих напряжений.

Рис.3. Детали каркаса а — стык стоек; б — частично-защемленный стык ригеля со стойкой; в — платформенный егык в стоёчно-рнгёльном каркасе; s— платформенный стык перекрытий со стойкой в безри-гельном каркасе; 1 — стойка; 2 — ригель; 3 — сварка; 4 — закладные стальные части; 5 — панель перекрытия; 6 — стальной оголовник стойки; 7 — обетоненная консоль из двутавра; 8 — раствор; 9 — обетонка стыка

Ограждающие панели при полном железобетонном каркасе делаются самонесущими или навесными в зависимости от этажности здания, материалов и конструкции панелей. Разрезка стены на отдельные элементы может быть различна по размеру и форме, а сами элементы различаются по материалу, фактуре и цвету.

Рельефно выступающая простеночная панель позволяет полностью или частично скрыть стойки каркаса (рис. 4, а). При панелях на целый шаг каркаса или более стойки делают полностью выступающими в помещение (рис.4, б—г). Материалы и конструкции панелей применяются такие же, как при поперечных несущих стенах. Самонесущие панели устанавливаются с гибкой анкеровкой к элементам каркаса или перекрытиям (рис. 4, б), а навесные — с жесткой анкеровкой (навеской) или непосредственным опиранием на элементы железобетонного каркаса (рис. 4, в и г).

Рис. 4. Детали узлов сопряжений панелей с каркасом а — решение с пилястрами; б — с самонесущими панелями на комнату (разрез и планов — с навесными панелями на комнату; г — с навесными панелями поясной разрезки; / — панель стены; 2 — стойка каркаса; 3 — панель пилястры; 4 — эффективный утеплитель; Б — ригель каркаса; 6 — легкий бетон; 7 — теплоизоляция; 8 — раствор; 9 — пороизол; 10 — синтетическая мастика; 11 — пароизоляция; 12 — стальные уголки; 13 — стальной анкер; 14 — декомпрессионная полость; 15 — тяжелый бетон; 16 — перекрытие; 17 — сварка; 18 — стальной оголовник стойки; 19 — стальные закладные части; 20 — подклинка; 21 — простенок

Вертикальные швы между панелями и каркасом тщательно уплотняются эффективными теплоизолирующими полосами и покрываются слоем легкого раствора, наносимого для прочности по сетке.

Неполный железобетонный каркас

При неполном железобетонном каркасе для наружных стен применяются несущие панели. Разрезка стены на панели при поперечном стоечноригельном каркасе может быть как на комнату и более, так и с простеночными элементами. При этом нужно иметь в виду, что на опорах ригелей создаются большие сосредоточенные нагрузки, что требует повышенной прочности панелей. При продольном или безригельном каркасе панели делаются не менее чем на комнату, а опирание перекрытий дает нагрузку более распределенную по периметру наружных стен. Несущие панели рекомендуется делать однослойными из легкого бетона, так как в многослойных панелях при опирании ригелей или перекрытий на их железобетонную основу создаются тепловые мостики, ведущие к промерзанию мест опирания.

В одноэтажных зданиях железобетонные каркасы выполняются в виде рам с жестким защемлением стоек в фундаментах и с шарнирным соединением с фермой или балкой покрытия, распертых в продольном направлении.

Технология строительства железобетонных каркасных конструкций

От типа металлической конструкции и количества этажей зависит способ возведения здания. Различают сборные, монолитные и комбинированные конструкции.

Первый вариант имеет ряд преимуществ:

  1. Отсутствие необходимости подогрева рабочего места зимой, что существенно экономит затраты на энергоресурсы.
  2. Возможность оставлять железобетонные материалы на стройке, что обеспечивает непрерывность процесса сборки конструкции.
  3. Уменьшение необходимости непрофессиональной рабочей силы.
  4. Наличие дополнительного пространства, которое отсутствует при монолитном строительстве.
  5. Элементы каркаса изготовляются на заводе, что позволяет обойтись без сварочных работ.
  6. Быстрота сооружения здания.
  7. Достижение прочности сразу после установки.

Среди недостатков — большой расход материала на опоры, ограничение в формах, которые по умолчанию установлены заводом-изготовителем, т.к. арматура не поддается сгибанию.

Сборные конструкции

При возведении многоэтажных домов используют следующие типы сборных каркасов:

  1. Связевый. Представляет собой пространственную конструкцию и колонны, которые шарнирно прикреплены к ней при помощи ригелей. Обеспечение жесткости происходит неравномерно. Из-за шарнирного крепления колонны почти не сопротивляются горизонтальным сдвигам. Элементы сжимаются вертикальными нагрузками (несущие стены, внутренние перегородки, плиты перекрытия).
  2. Рамно-связевый. Отличается от предыдущего типа жестким креплением колонн и балок.
  3. Рамный. Колонны и ригели закреплены жестко. Они образуют плоские и пространственные рамы в 2-3 направлениях. Жесткость обеспечивается равномерно всеми составляющими системы. На несущую способность рамы влияет каждый элемент в отдельности, параметр снижается при увеличении шага установки колонн и с повышением высоты этажа.

Чтобы элементы каркаса было удобно транспортировать, на них устанавливаются специальные петли или проделываются отверстия. На строительной площадке детали сваривают.

Конструкция таких каркасов предполагает наличие железобетонного фундамента. На нем монтируют колонны с промежутками 6-12 м. Для фундаментных балок применяют бетон марок 200-400. Эти элементы будут служить опорой несущим стенам. Балки размещают так, чтобы уровень пола был на 3 см выше их верхней стороны. Пустое пространство заливается бетоном. Для этого подходит марка 100.

Для того чтобы пол был защищен от промерзания, а также, чтобы на нем не сказывалось влияние почвы на балки, производят гидроизоляцию. Большие конструкции возводятся при помощи колонн 1.020, приспособленных к нагрузке до 500 т, что равняется 10 этажам. Наружные стены возводят из ячеисто-бетонных блоков, уложенных в 1 ряд. Благодаря нулевой жесткости сохраняется пластичность фасада. Блоки укладывают на балки или плиту перекрытия.

При строительстве несущей конструкции из блоков маленького размера кладку можно производить в 1 или несколько слоев. На этапе конструирования подобного строения нужно убедиться, что кладка не служит опорой каркаса. Толщина стен подбирается с учетом теплоизоляционных требований. В жилых домах этот параметр должен быть равен 50 см.

Ячеисто-бетонные блоки подходят и для внутренних перегородок (между комнатами, квартирами). Эти стены являются для каждого этажа самостоящими. Во время планирования толщины перегородок и перекрытий в первую очередь учитываются требования звукоизоляции (больше 50 дБ).

Существуют нормативные документы для расчета параметра. Он зависит от используемых блоков, раствора, бетона и пр. Избавиться от посторонних звуков поможет минплита, которой заполняются пустоты. Плотность материала должна находиться в пределах 80-100 кг/м³.

Рекомендуемая толщина межкомнатных стен — 12 см, звукоизоляционный параметр — минимум 43 дБ.

Сборный каркас чаще всего применяется при возведении 2-5-этажных промышленных построек. Если строится более высокое здание, требующее больших крановых нагрузок, то целесообразно использовать стальное основание. Его составляющие (колонны, ригели и связующие элементы) бывают сплошные или решетчатые. Их изготавливают из швеллеров, уголков и прочих профилей, скрепленных при помощи сварочного аппарата.

Каркасы с опорами из камня устанавливают при возведении невысоких строений при отсутствии больших пролетов и чрезмерных нагрузок. Несущую способность повышают за счет армирования стальной сеткой, арматурой или усиливают, применяя железобетонные сердечники.

Сборно-монолитные каркасы

При применении таких каркасов можно снизить трудоемкость работ и уменьшить их срок, сохранив основные достоинства монолитных конструкций.

В этом варианте колонны и балки бетонируются в опалубке с тонкими стенками и квадратным сечением. Стыки арматуры и опалубки замоноличиваются, когда колонны и балки заливаются бетоном.

Элементы изготавливают из обыкновенного или преднапряженного бетона. При этом толщина стенок должна находиться в пределах 8-12 см. Если используется обыкновенный бетон, потребуется дополнительное армирование.

Технология возведения такой конструкции:

  1. Колонны монтируются в выемку в ж/б плите, на которой размещаются панели с пустотами, сверху устанавливают пролетные элементы.
  2. Арматурную сетку, которая расположена между панелями приваривают к армопрутьям пролетных элементов.
  3. Заливают бетонную смесь.

Монолитный каркас

Монолитный каркас можно соорудить при помощи как съемной, так и несъемной опалубки. Второй тип чаще применяется для возведения невысоких частных домов. После того как опалубку заливают бетоном, она соединяется с другими элементами и выполняет роль несущей конструкции. В современном строительстве ее изготавливают из разных материалов, в т.ч. из пенопласта.

В зависимости от конструкции опалубки бывают 2 видов:

  1. Щитовой. Опалубку такого типа создают из отдельных деталей, которые соединяются специальными крепежными элементами. Таким образом формируют емкость для заливки бетона, который станет основанием будущей постройки.
  2. Туннельный. Опалубку приобретают в собранном виде, из-за чего такой тип конструкции подойдет не для всех монтажных работ. Купленные изделия не подлежат изменениям. Их заполняют раствором сразу после установки.

Если требуется большой объем бетона, его заказывают на предприятии. В другом случае раствор можно замесить самостоятельно.

После завершения работ по укладке бетона необходимо перейти к его уплотнению: это убережет конструкцию от образования пустот. Для выполнения задачи подойдут специальные инструменты (глубинный, а также поверхностный вибратор и пр.).

При помощи уплотнения монолитный каркас станет максимально прочным. После завершения процесса переходят к армированию конструкции. Особенности технологии позволяют реализовывать различные дизайнерские идеи.

Колоны промышленных зданий и сооружений

Колоны промышленных зданий по материалу исполнения выполняются из металла и/или железо-бетонна ( монолитного и/или сборного). Металлические колонны – представляют собой несущую строительную конструкцию, располагаемая вертикально и служащая чаще всего в качестве опоры зданий. Однако на сегодняшний день металлические колонны используют не только как основные несущие конструкции. Металлические колонны совместно с балками образуют скелет здания. Колонны металлические, объединенные при помощи металлических балок, создают очень надежный каркас здания. На металлические колонны возложена основная силовая нагрузка. Стальные металлические колонны применяются чаще иных благодаря их высоким прочностным характеристикам.

Крепление металлической колоны к фундаменту

Огнестойкость металлической колонны не обеспечена, и необходимо предусмотреть дополнительные меры по повышению предела огнестойкости металлической колонны. Железобетонные колонны – это архитектурный элемент, который способен выполнить одновременно две функции. Колонна придает зданию стиль и индивидуальность, на ней великолепно смотрятся балки, арки, ригели и пр. Колонна служит специальной опорной конструкцией, снижая нагрузку конструкции на грунт.

Сборный железобетон – за и против

Главное отличие сборного железобетона от строительства из монолита – это изготовление строительных конструкций в заводских условиях при тщательном лабораторном контроле всего процесса. Влияние человеческого фактора на качество изделий сводится к абсолютному минимуму и, наверное, можно отнести это к серьезным преимуществам. Как, впрочем, и быстрый монтаж, не требующий большого количества квалифицированных рабочих на объекте. Благодаря системе пустот железобетонные изделия отлично заглушают шумы, превосходят различные технологии по несущей способности и некоторым другим механическим свойствам. Отметим высокую трещиностойкость, отличную способность сопротивляться динамическим нагрузкам и противостояние коррозийным воздействиям. Но для сравнения с монолитом отметим, что сборный железобетон преимущественно используется для создания унифицированных конструкций.

Что выбрать?

. Если же в приоритете скорость, требуется качественный и при этом недорогой объект в сжатые сроки, лучше остановиться на более традиционном и проверенном методе строительства из железобетона.

Если вы планируете создание крупной площадки – торгового центра, промышленных и логистических баз, возможно, монолитное строительство будет более целесообразно. Если же речь о небольших площадках, расходы на монолит автоматически становятся неоправданно большими, и здесь явно выгоднее обратиться к железобетонным изделиям. В любом случае, принять правильное решение вам помогут опытные специалисты, которые имели возможность на практике сравнить преимущества и строительства из железобетона и монолитного метода. Вот почему мы рекомендуем обратиться именно к нам.. Материал изготовления колонн – железобетон, являющийся одним из наиболее долговечных и прочных материалов, способен выдерживать большие нагрузки. Сборные железобетонные колонны производятся с сечением от 300х300 до 500х500, 600х600, 400х800 длиной от 2.25 до 19 м. ГОСТ 25628-90 Колонны бетонные Настоящий документ должен применяться при разработке проектов планировочной организации территории новых, расширяемых и реконструируемых производственных объектов : промышленных предприятий различных отраслей, объектов инженерного обеспечения, складов, объектов транспорта, связи, коммунальных объектов, технопарков, логистических центров.

Колоны башмачного типа

Соединение колонных башмаков с фундаментными болтами осуществляется с помощью гаек и шайб, с их же помощью осуществляется корректировка колонны по высоте, а также относительно вертикальной оси. После установки колонны в проектное положение, пространство между колонной и основанием (фундаментом) необходимо заполнить бетоном как можно скорее с целью предотвращения возможных деформаций в болтах. В дальнейшем, оба соединенных элемента будут работать, как единая железобетонная конструкция (т.к. такое соединение является жестким). Все нагрузки, воспринимаемые колонной, с помощью колонных башмаков передаются на анкерные болты в фундаменте. Количество башмаков в колонне зависит от размеров колонны, нагрузок, передаваемых колонной, класса бетона и типа башмака колонны. Бетонные колоны изготавливаются в соответствии с Межгосударственным стандартом на бетонные колонны

У колоны данного типа 6 башмаков.

Огнестойкость железобетонной колонны обеспечена изначально. Для обеспечения пожарной безопасности складского здания требуется выполнение следующего условия: фактический предел огнестойкости конструкций (Пф) должен быть равен или превышать требуемый (Птр) по нормам предел огнестойкости. (Пф>Птр).

Экономичность и снижение стоимости строительства склада.

Использование железобетонных колонн в несущем каркасе складского комплекса класса А изначально оправдано более низкой стоимостью железобетонных колонн. В условиях финансового кризиса, когда стоимость металла зависит от валюты, металлические колонны становятся слишком дорогими при строительстве складов класса А. Выводы по выбору несущих колонн для склада класса А

При проектировании и строительстве складского комплекса класса А использование железобетонных колонн однозначно выгоднее и рациональнее в силу следующих факторов:

— по УСТОЙЧИВОСТИ железобетонная колонна при расчетной длине 12 метров обладает гораздо большей устойчивостью, чем металлиеская, причем в обоих плоскостях. А металлическая колонна имеет разную устойчивость в своих плоскостях.

— по ОГНЕСТОЙКОСТИ железобетонная колонна не требует каких либо дополнительных мероприятий по обеспечению предела огнестойкости строительных конструкций, металлическая колонна требует применения дополнительных мер, что ведет в увеличению стоимости.

— по ЭКОНОМИЧНОСТИ в условиях финансового кризиса, когда стоимость металла напрямую зависит от валюты, железобетонная колонна получает неоспоримое преимущество в стоимости, при этом обладая необходимой устойчивостью и огнестойкостью. Использование железобетонных конструкций значительно снижает стоимость строительства складских комплексов класса А.

Компания готова перепроектировать бетонные колоны и стальные колонны под бетонные колоны башмачного типа

Повышение эффективности монолитного каркасного жилья

Несмотря на то что монолитный каркас приобрел доверие строителей, его свойства постоянно улучшают: повышают прочность, снижают расход материалов. Для достижения этих целей применяют бетоны более высоких марок. Благодаря этому удается снизить расход арматуры и стоимость постройки. Каркас здания считается эффективным, если армирование превышает 3%.

Монолитную конструкцию оптимизируют следующими способами:

  • по марке бетона;
  • по сечению железобетонных компонентов;
  • по проценту армирования в бетоне.

При возведении монолитного здания руководствуются способом, который предполагает заглубление коробки сооружения на 2 этажа. При помощи этого метода удается сделать конструкцию максимально надежной, т.к. нагрузки передаются высокопрочным пластовым почвам.

Несмотря на эффективность, эта технология редко применяется при возведении домов высотой до 3 этажей включительно. Причина заключается в высокой стоимости такого строения (сооружение деревянной опалубки, применение дорогостоящей техники и пр.). При обустройстве невысоких зданий чаще применяют сборные каркасы, которые обладают достаточной прочностью, при этом стоят намного дешевле.

Одноэтажное однопролетное здание с несущими стенами

Одноэтажные бескаркасные здания с несущими стенами применяются при сравнительно небольших пролетах (до 12, редко 18 м), небольших высотах (до 9 м), а при наличии мостовых кранов — при грузоподъемности их не более 5 т.

Стены такого здания являются одновременно и ограждающими, и несущими элементами. Для обеспечения опирания на стены унифицированных конструкций покрытий стены располагают так, чтобы их внутреняя грань отстояла от разбивочной оси на 250 мм.

Одноэтажные однопролетные здания с несущими стенами (поперечные разрезы)

а — здание небольшой высоты, б — здание большой высоты без мостового крана, в — то же см мостовым краном, 1- покрытие, 2 — пилястра

Двускатное очертание покрытия обеспечивает удобный отвод с покрытия дождевых и талых вод. Основной размер здания по вертикали — высота от пола до низа покрытия — выбирается в зависимости от технологических нужд из числа приведенных выше.

Несущие конструкции покрытия опираются своими концами непосредственно на стены. При высоте до 8—9 м толщина стены, необходимая для отапливаемого здания по теплотехническому расчету, в большинстве случаев оказывается достаточной и по расчету на прочность.

При большей высоте и при наличии мостового крана стены усиливают пилястрами, которые располагают (в плане) между окнами на разбивочных осях. В этом случае несущие конструкции покрытия опираются на пилястры и стены располагают так, чтобы внутренняя грань стены совпадала с разбивочной осью.

В здании с мостовым краном пилястры должны иметь размеры, достаточные для опирания подкрановых балок. При отсутствии мостового крана размеры пилястр в плане’назначают исходя из требований прочности и жесткости стены.

Одноэтажное многопролетное каркасное здание с подвесными кранами

Одноэтажные здания с подвесным транспортом при высоте до 9,6 м отличаются простой конструктивной схемой: колонны в таких зданиях имеют постоянное сечение по всей высоте, подкрановые балки отсутствуют. Подвесные краны перемещаются по стальным балкам, подвешенным к несущим конструкциям покрытия.

Одноэтажное многопролетное каркасное здание с подвесными кранами

1 — подвесной кран, 2 — пути подвесного крана

Недостатком таких зданий является ограниченная грузоподъемность подвесных кранов, которая в настоящее время не превышает 5 т.